Living with Atypical HUS

PREGNANCY AND ATYPICAL HUS

Michelle Hladunewich, MD
Associate Professor, University of Toronto
Director, Divisions of Nephrology & Obstetric Medicine
Sunnybrook Health Sciences Centre
Clinical Director of Research, Toronto GN Registry
Medical Lead for Glomerulonephritis and Women’s Health, Ontario Renal Network
Pregnancy and Atypical HUS

Pregnancy and Kidney Disease (PreKID) Clinic
• Collaborative approach – High Risk OB & nephrology

Patients Counseled >1000
• Number of Pregnancies 65%
> 50 new patients consulted at clinic undergo pregnancy annually

• < 10 have had aHUS
Pregnancy Counseling

Pregnancy Risk Assessment

- Risk of Deterioration in Kidney Function
- Risk of Adverse Pregnancy Outcomes
 - Preeclampsia, Poor fetal growth, Pre-term Delivery

Risk of a Flare
Optimization Strategies

Pregnancy Management

Differentiating aHUS from TTP and Preeclampsia/HELLP Syndrome

Postpartum Care
Disease Flare

- Pregnancy Exacerbated
 - Lupus
 - Present or Flare in any trimester or early postpartum
 - Nephritis is the biggest risk for a bad outcome
 - Antiphospholipid Antibody Syndrome
 - Severe Morbidity and Mortality reported
 - 6-12 months of disease quiescence recommended
 - ANCA
 - TTP/Atypical HUS
 - Diabetic Nephropathy
 - ? Mechanism
 - ? MCD, FSGS, MN, IgA
 - Deserves further study
Complement System

- Innate immune system - protect
- 3 distinct pathways (classical, lectin and the alternate)
- Alternate pathway (C3 convertase) can be initiated spontaneously so it is tightly regulated

Chiang and Inagi, Nat Rev Immunol 2010
aHUS-associated complement abnormalities

- **Loss of function mutations:**
 - Factor H (CFH)
 - Factor I (CFI)
 - Membrane cofactor protein (MCP/CD46)
 - Thrombomodulin (THBD/CD141)

- **Gain of function mutations:**
 - CFB
 - C3

- **Autoantibodies:**
 - CFH (in combination with CFHR3/CFHR1 deletion: DEAP-HUS

Chiang and Inagi, Nat Rev Immunol 2010
Multiple hit theory of TMA pathogenesis

- **At Risk for TMA**
 - Complement mutations increase risk and some may be more important eg CFH

- **Safe Zone**

- **Disease becomes manifest as risk factors accumulate**
 - Additional triggers eg, CNI, toxin, IRI or pregnancy
 - Risk allele
 - Trigger

- **CFH**

- **MCP**

© Damien
Multiple hit theory of TMA pathogenesis
TMA Phenotype

At Risk

1st Hit

2nd Hit

Safe

Pregnancy

MCP

CFH

TMA
Pregnancy and Atypical HUS

- Series of 21 pregnancies/100 women with aHUS
- Pregnancy is the trigger in ≈ 20% of women with aHUS
- Most commonly presented in the second pregnancy

Fakhouri F et al JASN 2010;21:859-867
Pregnancy and Atypical HUS

- 74% with documented complement abnormalities had at least one pregnancy before the pregnancy related aHUS

Fakhouri F et al JASN 2010;21:859-867
Pregnancy and Atypical HUS

- 79% presented postpartum
- Presumed the complement system is activated to help cleanup placental debris

Fakhouri F et al JASN 2010;21:859-867
Pregnancy and Atypical HUS

• Outcomes were poor for mom
 • 62% reaching ESRD by one month
 • 76% reaching ESRD by last follow-up
 • Despite majority receiving PLEX

• Outcomes were reasonable for baby

Table 5. Pregnancy outcome in 44 women with aHUS and genetic defects (CFH = 23, CFI = 9, MCP = 4, C3 = 3, CFB = 2, more than one mutation = 3) and in 10 patients with aHUS and no detectable genetic defect

<table>
<thead>
<tr>
<th></th>
<th>Number of Pregnancies</th>
<th>Fetal Loss</th>
<th>Preeclampsia</th>
<th>P-aHUS</th>
<th>Uneventful Pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with genetic abnormality (n = 44)</td>
<td>103</td>
<td>5 (4.8%)</td>
<td>8 (7.7%)</td>
<td>18 (17.4%)</td>
<td>77 (74.7%)</td>
</tr>
<tr>
<td>Patients with no genetic abnormality (n = 10)</td>
<td>15</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>3 (20%)</td>
<td>12 (80%)</td>
</tr>
</tbody>
</table>

Fakhouri F et al JASN 2010;21:859-867
Pregnancy and Atypical HUS

Table 4. Frequency of P-aHUS according to the type of complement dysregulation

<table>
<thead>
<tr>
<th>Patients</th>
<th>Number of Pregnancies</th>
<th>P-aHUS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFH mutations (n = 23)*</td>
<td>49</td>
<td>10 (20%)</td>
</tr>
<tr>
<td>Mutations in SCR19-20 (n = 6)</td>
<td>10</td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Mutations in other SCR (n = 17)</td>
<td>38</td>
<td>9 (24%)</td>
</tr>
<tr>
<td>CFI mutations (n = 8)</td>
<td>26</td>
<td>3 (11%)</td>
</tr>
<tr>
<td>MCP mutations (n = 4)</td>
<td>6</td>
<td>1 (17%)</td>
</tr>
<tr>
<td>C3 mutations (n = 3)</td>
<td>7</td>
<td>2 (28%)</td>
</tr>
<tr>
<td>CFB mutations (n = 2)</td>
<td>7</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>More than one mutation (n = 4)**</td>
<td>5</td>
<td>3 (60%)</td>
</tr>
<tr>
<td>No mutation (n = 10)</td>
<td>15</td>
<td>3 (20%)</td>
</tr>
</tbody>
</table>

*Three patients with two mutations in CFH (SCR 9 and 19)—in C3/CFH and in MCP/CFH—were excluded from the analysis.

**Patients with two mutations in CFH (SCR 9 and 19)—in C3/CFH (patient 8), in MCP/CFH (P3), and in CFI/CFH (patient 4)

1st pregnancy presentation 4/7 CFH Mutation

Fakhouri F et al JASN 2010;21:859-867
Pregnancy Counseling

- Women with a history of aHUS or a genetic preponderance ≈ 20%
- CFH mutation may be the worst to have
- Subsequent Pregnancies potentially more dangerous than the 1st pregnancy
- Disease is aggressive
Characteristics and Outcomes of AKI treated with Dialysis During Pregnancy

- Analyzed data from 1.9 million pregnancies in ON over 15 years (1997 to 2011)
- Incidence of AKI treated with dialysis: 1 in 10,000 pregnancies (95% CI 0.8 to 1.1) (N=188)
- Women treated with acute dialysis in pregnancy were older, had a lower neighborhood income, fewer prenatal visits, and were more likely to have preexisting hypertension or chronic kidney disease compared with the general population
 - Preexisting medical condition (RR 2.24, 95% CI 1.42-3.52)
 - Medical complication of pregnancy (RR 5.55, 95% CI 4.16-7.38)

Hildebrand, Hladunewich and Garg JASN 2015
Diagnosis

Postpartum

- Septic abortion
- Abruptio placentae
- Severe haemorrhage / DIVC
- Sepsis
- PE/E
- HELLP syndrome
- Acute fatty liver
- ADAMTS13 deficiency-TMA
- CAP dysregulation-TMA
- TMA of unknown mechanism

Fakhouri F et al CJASN 2012
THROMBOTIC MICROANGIOPATHY

A pathology that results in thrombosis in capillaries and arterioles due to an endothelial cell injury
Diagnosis

- Preeclampsia/ HELLP Syndrome
 - Disease of the placenta
- TTP
 - Estrogen effect on ADAMTS13
 - Decreases throughout pregnancy to nadir in postpartum
 - Pro-coagulant state
- Atypical HUS
 - genetic mutations activation or regulation of the alternative complement pathway triggered by pregnancy
Treatment

- Preeclampsia/HELLP Syndrome
 - Delivery
- TTP
 - PLEX
- aHUS
 - PLEX
 - Eculizumab
Treatment

- Eculizumab
 - Has been used during pregnancy in PNH
 - Does not appear to cross the placenta
 - Does not appear to enter breast milk
 - Case report in pregnancy of a women with a homozygous mutation in Factor H treated from 26 weeks onward
 - 38 weeks gestation
 - 3650 g baby

Ardissino et al ACOG 2013
In Summary

• Patients need to be aware of their potential risks entering a pregnancy
• Clinicians need to be educated as this is a difficult clinical diagnosis to make
• Availability of Eculizumab will make child bearing a safer potential for patients with aHUS